

2020年8月3日 国立大学法人 信州大学 国立大学法人 京都大学 日本製鉄株式会社 高輝度光科学研究センター

ゲート型吸着剤が切り拓く吸着分離の新時代 一二酸化炭素の分離回収技術の開発に貢献一

概要

京都大学大学院工学研究科 平出翔太郎 助教、坂中勇太 同博士課程学生、日本製鉄株式会社 上代洋主幹研究員、高輝度光科学研究センター(JASRI) 河口彰吾 主幹研究員、京都大学大学院工学研究科 宮原稔 教授、信州大学先鋭領域融合研究群先鋭材料研究所 田中秀樹 教授(特定雇用)らの研究グループは、従来の吸着剤とは異なる新材料(ゲート型吸着剤)を活用した二酸化炭素の高効率分離システムを提案しました。

二酸化炭素 (CO_2) は地球温暖化をもたらす温室効果ガスであり、パリ協定(2015~年)では、大気中への CO_2 排出量を削減することによって、平均気温の上昇を 2 C以下とする目標が定められています。この目標を達成するためには、エネルギー効率の向上や再生可能エネルギーの利用に加え、 CO_2 排出源において CO_2 を高効率・低コストで分離回収することが必要不可欠となります。

そこで、本研究グループは、自身が吸熱的に構造変形することで CO_2 を取り込む際の熱発生を抑えることが可能なゲート型吸着剤に着目し、その優れた CO_2 分離性能を明らかとしました。同時に、このゲート型吸着剤の特性を活かした<u>高速度吸着分離システム</u>を考案し、その CO_2 分離効率が従来方式と比較して極めて高くなることを見出しました。

本研究は、ゲート型吸着剤が CO₂ の吸着分離回収システムの高効率化・省エネルギー化に有用であることを初めて明らかとしたものであり、さらに高性能なゲート型吸着剤の探索・開発のための大きな追い風となることが期待されます。

本成果は、2020 年 8 月 3 日 18 時(日本時間)に国際学術誌「Nature Communications」のオンライン版に掲載されます。

1. 背景

「混ざりあった分子を分離する」というのは容易なことではありません。例えば、化学産業において必要とされるエネルギーの約半分が、生成物を精製するための分離工程で消費されると言われており、これは蒸留や乾燥といった分離工程では、大量の熱エネルギーが必要とされるためです。つまり、高効率で省エネルギーな分離技術の開発は現代社会における重要課題の一つであり、とりわけ、CO₂の分離回収技術については低コスト・省エネルギー化が求められます。

この CO₂ の分離技術の一つとして期待されているのが吸着分離法です。これは無数の小さな穴(細孔)を持つ多孔性材料に特定の分子が濃縮(吸着)される性質を活かした技術であり、冷蔵庫の脱臭炭や浄水器のフィルターにも用いられています。多孔性材料(吸着剤)を充填した吸着塔の一端から混合物を流し込むと、吸着剤と強く相互作用する分子は細孔に取り込まれます。一方、吸着剤との相互作用が弱い分子は、一部が細孔に取り込まれるものの、多くは吸着剤を素通りし、吸着塔から流出するため、その純成分を得ることができます。細孔に取り込まれた分子は、吸着塔内を加熱か減圧することで回収(脱着)します。吸着剤と相性の良い分子を高純度で得るためには、その相互作用が強いほど有利ですが、その分、脱着に必要なエネルギーは大きくなってしまいます。つまり、吸着分離効率を大幅に向上させるカギは、相性の良い分子を選択的かつ大量に吸着しながらも、それらを容易に脱着することが可能な、ある種矛盾した性質をもつ吸着剤を見出すことにあります。

そこで、本研究グループが着目したのが「ゲート型吸着剤」です。この材料の最大の特徴は、「柔らかい」構造を持っている点にあり、例えば、ELM-11 と呼ばれるゲート型吸着剤は、 CO_2 分子に対してその「柔らかさ」を発揮します。この ELM-11 は、雰囲気ガス中に含まれる CO_2 濃度が低いとき、その細孔を閉じており、 CO_2 を吸着しませんが、 CO_2 濃度がある「しきい値」を超えると、急激に膨張して細孔を開き、 CO_2 分子を取り込みます(図 1)。その細孔の開閉挙動が、まるで扉(=ゲート)のようであることから、ゲート型吸着剤と呼ばれるようになりました。そして、このとき、ELM-11 は CO_2 分子を包み込むかのように構造変形をするため、高い CO_2 選択性を発現します。さらに ELM-11 は、雰囲気ガス中に含まれる CO_2 濃度がしきい値よりも低くなると、その構造を収縮させ、吸着していた全ての CO_2 分子を放出します。つまり、ELM-11 は、 CO_2 を選択的に吸着し、かつ、容易に CO_2 を脱着するという、 CO_2 の吸着分離に極めて適した特性を有しています。

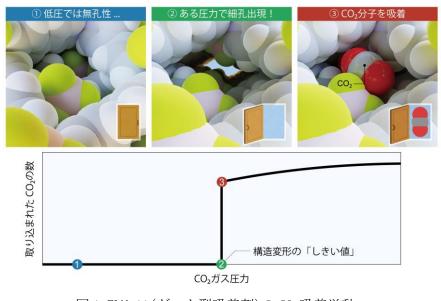


図 1 ELM-11 (ゲート型吸着剤) の CO。吸着挙動

ここで、排ガスなどに含まれる CO_2 の吸着分離では、大量のガスを高速に処理できることが求められますが、このときに問題となるのが、 CO_2 の吸着にともなう熱(吸着熱)の発生です。従来型の「硬い」吸着剤では、この吸着熱によって温度が上昇し、その結果、 CO_2 吸着量の減少と CO_2 選択性の低下が生じてしまいます。

一方、「柔らかい」構造を持つ ELM-11 は、 CO_2 分子を取り込む際にその構造が膨張します。本研究グループは、この ELM-11 の膨張によって冷熱が生じ、 CO_2 の吸着にともなう温度上昇を効果的に抑制できる可能性があることに着目しました。そして、この ELM-11 を CO_2 の高速度吸着分離システムに応用するための研究に取り組みました。

2. 研究手法・成果

以上の結果から、ELM-11 は CO_2 濃度の大きな高圧ガスの高速度処理に適していると考えられます。そこで、天然ガスや<u>埋立地ガス</u>など、メタン (CH_4) と CO_2 の成分比がほぼ等しい高圧ガスを対象とし、これを CO_2 とエネルギーガスとして有用な CH_4 に分離するための高速度吸着分離システムに ELM-11 を応用することを検討しました。まず、ELM-11 へのガス吸着実験や、種々の計算科学的検討を実施し、ELM-11 の CO_2 分離能の数値化を行いました。そして、 CH_4 と CO_2 の混合ガスの分離に最も有望とされている「硬い」従来型吸着剤 HKUST-1 との比較検討を行ったところ、ELM-11 の CO_2 選択性は HKUST-1 の O. 43 倍であることが分かりました(図 O2 とたし、これは両者が室温下にある場合の値です。上述のように、高速度吸着分離システムでは吸着熱の発生によって CO_2 選択性と CO_2 吸着量の低下が生じます。そこで、高速度吸着時における吸着剤の温度上昇と、その時の CO_2 選択性および CO_2 吸着量の計算を行いました。その結果、 CO_2 吸着量の膨張によって、 CO_2 吸着熱の約 CO_2 収着量の計算を行いました。その結果、 CO_2 収益性は CO_2 の表を発生し、その温度上昇を大幅に抑制 CO_2 選択性は CO_2 の表を発生し、その温度上昇を大幅に抑制 CO_2 選択性は CO_2 の表を発生し、その温度上昇を大幅に抑制 CO_2 選択性は CO_2 の表を発生し、その結果が得られ、 CO_2 の表ものに変換を発生し、その記度上昇を大幅に抑制 CO_2 選択性は CO_2 の表もの表ものに変換を発生し、その記度上昇を大幅に抑制 CO_2 選択性は CO_2 の表ものに変換を発生し、その温度上昇を大幅に抑制 CO_2 選択性は CO_2 の表ものに変換を発生し、 CO_2 の表ものに変換を発生し、 CO_2 の表ものに変換を発生し、 CO_2 の表ものに変換を表すと、 CO_2 の表ものに変

ここで、上述のように ELM-11 は、雰囲気ガス中に含まれる CO_2 濃度がある「しきい値」を超えると、急激に膨張して細孔を開き、 CO_2 分子を吸着します。このことは、ELM-11 への CO_2 吸着によって、ガス中の CO_2 濃度が「しきい値」にまで低下すると、残りの CO_2 は全く吸着されずに CH_4 とともに流出してしまい、エネルギーガスとして利用するための高純度な CH_4 ガスを得ることができないことを意味しています。そこで、ELM-11 を充填した吸着塔の後段に、低濃度 CO_2 ガスの吸着特性に優れる HKUST-1 を充填した小さな吸着塔を設けることで、この問題を防ぐことを着想しました。そして、小型の二段吸着カラ

ムを用い、 CH_4 と CO_2 の混合ガスの流通試験を行ったところ、着想通り、高純度な CH_4 ガスが得られることを確認することができました。

以上の結果をもとに、HKUST-1 のみを充填した一段吸着塔からなる高速度吸着分離システム①と、ELM-11 および HKUST-1 をそれぞれ充填した二段吸着塔からなる高速度吸着分離システム②を設計し、両者の比較を行いました(図 2c)。各システムにおいて得られる高純度 CH_4 ガスの流量が同じとなるように設計したところ、システム②では、供給すべき CH_4 と CO_2 の混合ガスの流量がシステム①よりも 62%小さくなり、また、システム②の全塔体積はシステム①よりも 69%小さくなることが明らかとなりました。この全塔体積の縮小は、吸着剤使用量の削減のみならず、動力コストの削減、つまり、省エネルギー化にもつながります。一見すると単純な発想に基づく二段吸着塔システムですが、このように大幅なシステムサイズの削減が可能となったのは、ELM-11 の特性を十分に発揮できるように一段目の吸着塔を設計することが可能となり、かつ、ELM-11 と HKUST-1 のそれぞれの特性を生かしたハイブリッド化が極めて有効に働いたためと言えます。

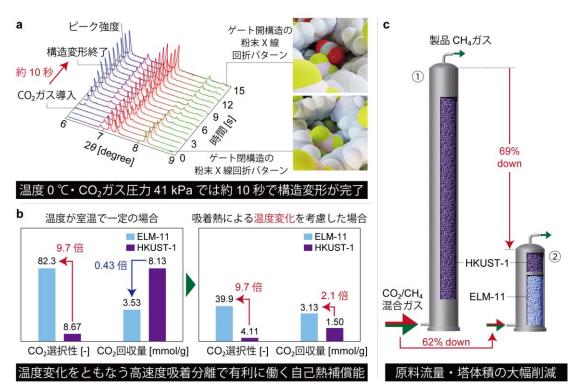


図 2 ELM-11 の CO₂ 分離特性評価と高速度吸着分離システムへの応用可能性の検討

3. 波及効果、今後の予定

これまでに種々のゲート型吸着剤が開発されており、 CO_2 だけでなく、エタンやプロピレンなど様々な分子を選択的に吸着するものが報告されています。特にプロピレンとプロパンの混合物の分離は、石油化学工業において極めて重要ですが、その分離は困難であり、多くのエネルギーが消費されていることから、ゲート型吸着剤を用いた高速度吸着分離システムの応用が期待されます。また、本システムは火力発電所などの CO_2 排出源における排ガス処理にも応用可能であることから、本成果は、さらに高性能なゲート型吸着剤の探索・開発のための大きな追い風となることが期待されます。

一方、ゲート型吸着剤を用いた高速度吸着分離システムを実用化するためには、ゲート型吸着剤の膨

張・収縮特性を損なわない造粒技術の開発や、その膨張にともなうガス流速低下の低減方法の確立、高速度吸着分離システムの操作論の高度化などが必要であり、今後もさらに研究を進めて行くことを予定しています。

4. 研究プロジェクトについて

本研究は、日本学術振興会特別研究員奨励費(15J05846)、研究活動スタート支援(19K23574)、基盤研究 B(17H03097 および 20H04466)、挑戦的研究(萌芽)(18K18975)、公益信託 ENEOS 水素基金、CREST(JPMJCR1324)、「物質・デバイス領域共同研究拠点」における「人・環境と物質をつなぐイノベーション創出ダイナミック・アライアンス」の共同研究プログラムの支援のもと行われました。また、SPring-8 の BL02B2 ビームラインでの放射光実験は、高輝度光科学研究センター(JASRI)の承認を得て実施しました(課題番号:2017B1210、2018A1082、2018B1539、2019B1290)。加えて、本研究の一部は京都大学学術情報メディアセンターのスーパーコンピュータを利用して実施されました。

<論文タイトルと著者>

タイトル: High-throughput gas separation by flexible metal-organic frameworks with fast gating and thermal management capabilities

(参考訳:高速ゲート吸着および自己熱補償能を備えた柔軟性金属有機構造体による高スループットガス分離)

著 者: Shotaro Hiraide, Yuta Sakanaka, Hiroshi Kajiro, Shogo Kawaguchi, Minoru T. Miyahara, Hideki Tanaka

掲載誌: Nature Communications DOI: 10.1038/s41467-020-17625-3

<用語解説>

パリ協定

2015年12月に、フランスのパリで開催された第21回国連気候変動枠組条約締約国会議(COP21)において採択された、2020年以降の温室効果ガス排出削減等のための新たな国際的枠組み。

ゲート型吸着剤

ガスの圧力がある「しきい値」を超えると、構造変形し、急激にガス分子を吸着する「柔らかい」吸着 剤。金属イオンと有機分子が交互に結合した構造を持つ、多孔性配位高分子(PCP)または金属有機構造 体(MOF)と呼ばれる材料に多く見られます。

高速度吸着分離システム

ここでは、吸着塔内への高圧ガスの導入と、吸着塔内の減圧を繰り返す、圧力真空スイング(PVSA)法を採用した吸着分離システムに対して、ガスの導入と減圧をより迅速に行うシステムのことを指します。

ELM-11

化学式[Cu(4,4'-bypiridine)2(BF4)2]で表される「柔らかい」PCP/MOFであり、ゲート型吸着剤の一種。

HKUST-1

化学式[Cu₂(benzene-1, 3, 5-tricarboxylate)₃],で表される「硬い」PCP/MOFの一種。

大型放射光施設 SPring-8

理化学研究所が所有する兵庫県の播磨科学公園都市にある世界最高性能の放射光を生み出す大型放射 光施設であり、JASRI が利用者支援などを行っています。SPring-8 の名前は Super Photon ring-8 GeV に由来し、ナノテクノロジー、バイオテクノロジーや産業利用まで、放射光を用いた幅広い研究が行わ れています。

粉末 X 線回折

粉末状の微結晶に X 線を照射し、微結晶中の原子核の周りにある電子によって散乱される X 線の回折像 を測定することで、結晶構造を解析する手法。

埋立地ガス

ゴミ埋立地において、微生物がゴミを分解することで発生するガスのこと。場所によって成分は異なりますが、一般的に、その成分内訳は 40-60%が CH_4 であり、残りの大部分が CO_2 となっています。

<お問い合わせ先>

研究に関する問い合わせ先

田中秀樹 (たなかひでき)

信州大学先鋭領域融合研究群先鋭材料研究所

E-mail: htanaka@shinshu-u.ac.jp

平出翔太郎(ひらいでしょうたろう)

京都大学大学院工学研究科化学工学専攻

E-mail: hiraide@cheme.kyoto-u.ac.jp

宮原稔(みやはらみのる)

京都大学大学院工学研究科化学工学専攻

E-mail: miyahara@cheme.kyoto-u.ac.jp

報道に関する問い合わせ先

国立大学法人信州大学

総務部総務課広報室

TEL: 0263-37-3056

E-mail: shinhp@shinshu-u.ac.jp

国立大学法人京都大学

総務部広報課 国際広報室

TEL: 075-753-5729

FAX: 075-753-2094

E-mail: comms@mail2.adm.kyoto-u.ac.jp

日本製鉄株式会社

総務部広報センター

TEL: 03-6867-2146

SPring-8/SACLA に関する問い合わせ先

高輝度光科学研究センター 利用推進部

普及情報課

TEL: 0791-58-2785

FAX: 0791-58-2786

E-mail: kouhou@spring8.or.jp

