本研究への支援
本研究成果の一部は、国立研究開発法人情報通信研究機構(NICT)の委託研究(JPJ012368C04501)により得られたものです。
【参考文献】
1.Takayuki Kobayashi, Shimpei Shimizu, Akira Kawai, Masanori Nakamura, Masashi Abe, Takushi Kazama, Takeshi Umeki, Munehiko Nagatani, Kosuke Kimura, Hitoshi Wakita, Yuta Shiratori, Fukutaro Hamaoka, Hiroshi Yamazaki, Hiroyuki Takahashi, and Yutaka Miyamoto, "C+L+U-Band 14.85-THz WDM Transmission Over 80-km-Span G.654.E Fiber with Hybrid PPLN-OPA/EDFA U-Band Lumped Repeater Using 144-Gbaud PCS-QAM Signals," in Proc. OFC2024, paper Th4A.1, 2024.
2.Kosuke Kimura, Takayuki Kobayashi, Shimpei Shimizu, Masanori Nakamura, Takushi Kazama, Masashi Abe, Takeshi Umeki, Akira Kawai, Fukutaro Hamaoka, and Yutaka Miyamoto, "GN-model-based SNR estimation in 15.2-THz bandwidth inline-amplified transmission with 80-km fibre spans," in Proc. ECOC2023, paper We.C.2.3, 2023.
3.Akira Kawai, Masanori Nakamura, Takayuki Kobayashi, Munehiko Nagatani, Hiroshi Yamazaki, Takeo Sasai, Fukutaro Hamaoka, and Yutaka Miyamoto, "Digital Inverse Multiplexing for Transmitters With Symbol Rates Over DAC Bandwidth Limit," J. Lightwave Technol. 42, 4076-4085, 2024.
【用語解説】
※1 波長帯の名称と波長範囲:
C帯とL帯は、石英光ファイバの低損失波長として、長距離光通信に用いられる代表的な光通信波長帯であり、国際通信連合(ITU-T)で国際標準化されています。C(Conventional)帯は、1530 - 1565nm, L(Long wavelength)帯は、1565 - 1625nmの波長範囲となっており、この2つの信号波長は、各々の帯域で実用的な光増幅中継が可能です。C帯、L帯各々の信号帯域を光の周波数帯域幅に換算すると約4~5THzとなります。また、C帯の短波長側の1460 nm – 1530 nmはS(Short wavelength)帯、L帯の長波長側の1625 nm – 1675 nmはU(Ultralong wavelength)帯と呼ばれています。
※2 2024年8月現在NTT調べ。
※3 IOWN:
NTTニュースリリース「NTT Technology Report for Smart World:What's IOWN?」の発表について
https://group.ntt/jp/newsrelease/2019/05/09/190509b.html
※4 デジタルコヒーレント:
デジタルコヒーレント技術とは、デジタル信号処理とコヒーレント受信と組み合わせた高効率な光伝送方式です。コヒーレント受信とは、受信側に配置した光源と、受信した光信号を干渉させることにより、光の振幅と位相を受信することが可能な技術です。偏波多重や位相変調などの変調方式により周波数利用効率を向上させるとともに、デジタル信号処理を用いた高精度な光信号の補償と、コヒーレント受信により、大幅な受信感度向上を実現します。
※5 周期的分極反転ニオブ酸リチウム(PPLN:Periodically Poled Lithium Niobate):
非線形媒質であるニオブ酸リチウム(LiNbO3)において、自発分極と呼ばれる結晶内の正負の電荷の向きを一定の周期で強制反転させた人工結晶です。周期的分極反転ニオブ酸リチウムは、元のニオブ酸リチウム結晶よりも圧倒的に高い非線形光学効果を得ることが出来ます。
※6 光パラメトリック増幅技術(OPA:Optical Parametric Amplifier):
物質中で生じる非線形光学効果を利用して、異なる波長の光同士を相互作用させることで、特定の波長の光を増幅する技術です。非線形媒質として、高非線形ファイバやニオブ酸リチウムが知られています。
※7 NTTニュースリリース「世界最大14.1THz帯域での長距離一括光パラメトリック増幅中継伝送に成功~IOWN/6Gにおけるオールフォトニクス・ネットワークの波長資源拡張技術として期待~」:
https://group.ntt/jp/newsrelease/2023/06/16/230616c.html
※8 ガウシアンノイズモデル:
光増幅器や電気回路で信号に付加される雑音は、ガウシアンノイズと呼ばれ、信号の振幅に足し合わされ(加法性)、その値はガウス分布の統計的性質をもちます。一方で、光ファイバ上で生じる非線形光学効果によって光信号は歪みを受けますが、歪みの影響は信号の波形に依存するため、雑音と統一的に扱うのが困難です。ガウシアンノイズモデルでは、長距離伝送において、光ファイバの波長分散の影響で非線形歪みが平均化されることに着目して、ガウス分布にしたがう雑音として扱います。厳密には、信号の歪み量と雑音は加算できませんが、ガウシアンノイズモデルでは、信号の劣化要因となるものを雑音として計算し加算することで、統一的な扱いが可能になり、伝送設計を信号対雑音比のみで行えるようになります。
※9 ギガボー(シンボルレートの単位):
1秒間に光波形が切り替わる回数。144ギガボーの光信号は、光波形を1秒間に1440億回切り替えて情報を伝送しています。
※10 PCS-QAM信号:
PCS(Probabilistic Constellation Shaping)とは、情報理論に基づき信号点の分布と配置を最適化することにより、信号伝送に必要な信号対雑音比の条件を軽減する技術です。QAM(Quadrature Amplitude Modulation)とは、信号光の振幅と位相の両方に情報を乗せる変調方式です。PCS技術をQAM方式に適用することにより、伝送路条件に応じて信号品質を最適化することが可能となります。本成果では、PCS-64QAMとPCS-16QAMを評価信号として用いています。
※11 周回伝送評価系:
光増幅器や伝送路ファイバをループ状に接続し、光スイッチで光信号の入出力タイミングをコントロールすることで、少ない機材で、長距離の光増幅中継伝送を試験できる実験方式
※12 波長当たりの高速化(マルチテラビット化)技術:
NTTニュースリリース「世界最高速、1波長あたり毎秒2テラビット超の光伝送実験に成功
~IOWN/6Gにおけるオールフォトニクス・ネットワークの大容量化・長距離化技術として期待~」
https://group.ntt/jp/newsrelease/2022/09/22/220922a.html